The stunting effect of a high CO2 ocean on calcification and development in sea urchin larvae, a synthesis from the tropics to the poles.
نویسندگان
چکیده
The stunting effect of ocean acidification on development of calcifying invertebrate larvae has emerged as a significant effect of global change. We assessed the arm growth response of sea urchin echinoplutei, here used as a proxy of larval calcification, to increased seawater acidity/pCO2 and decreased carbonate mineral saturation in a global synthesis of data from 15 species. Phylogenetic relatedness did not influence the observed patterns. Regardless of habitat or latitude, ocean acidification impedes larval growth with a negative relationship between arm length and increased acidity/pCO2 and decreased carbonate mineral saturation. In multiple linear regression models incorporating these highly correlated parameters, pCO2 exerted the greatest influence on decreased arm growth in the global dataset and also in the data subsets for polar and subtidal species. Thus, reduced growth appears largely driven by organism hypercapnia. For tropical species, decreased carbonate mineral saturation was most important. No single parameter played a dominant role in arm size reduction in the temperate species. For intertidal species, the models were equivocal. Levels of acidification causing a significant (approx. 10-20+%) reduction in arm growth varied between species. In 13 species, reduction in length of arms and supporting skeletal rods was evident in larvae reared in near-future (pCO2 800+ µatm) conditions, whereas greater acidification (pCO2 1000+ µatm) reduced growth in all species. Although multi-stressor studies are few, when temperature is added to the stressor mix, near-future warming can reduce the negative effect of acidification on larval growth. Broadly speaking, responses of larvae from across world regions showed similar trends despite disparate phylogeny, environments and ecology. Larval success may be the bottleneck for species success with flow-on effects for sea urchin populations and marine ecosystems.
منابع مشابه
Embryonic, larval and juvenile development of tropical sea urchin, Diadema setosum
Diadema setosum (Leske, 1778), is one of the common echinoids widely distributed in the Indo-West Pacific Ocean, where it occurs from the Red Sea, Persian Gulf and the east coast of Africa to Japan, Australia and Malaysia. To investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of D. setosum in a controlled laboratory condition at the In...
متن کاملEmbryonic, larval and juvenile development of tropical sea urchin, Diadema setosum
Diadema setosum (Leske, 1778), is one of the common echinoids widely distributed in the Indo-West Pacific Ocean, where it occurs from the Red Sea, Persian Gulf and the east coast of Africa to Japan, Australia and Malaysia. To investigate the developmental basis of morphological changes in embryos and larvae, we documented the ontogeny of D. setosum in a controlled laboratory condition at the In...
متن کاملDetermination of developmental stages of embryo in the Sea Urchin, Echinometra mathaei
Sea Urchin is one of the most useful tools in developmental biology studies because this organism has the simplest kind of developmental stages. We aimed to determine developmental stages and timetable of Echinometra mathaei embryo (the species of Persian Gulf). The spawning of E. mathaei was induced by 0.5M KCl injection (1ml) into the coelomic cavity. After fertilization, embryos were placed ...
متن کاملImpact of Ocean Warming and Ocean Acidification on Larval Development and Calcification in the Sea Urchin Tripneustes gratilla
BACKGROUND As the oceans simultaneously warm, acidify and increase in P(CO2), prospects for marine biota are of concern. Calcifying species may find it difficult to produce their skeleton because ocean acidification decreases calcium carbonate saturation and accompanying hypercapnia suppresses metabolism. However, this may be buffered by enhanced growth and metabolism due to warming. METHODOL...
متن کاملEffects of Salinity on Embryonic and Early Larval Development of a Tropical Sea Urchin, Salmacis sphaeroides
Effects of salinity on fertilization, embryonic stage, and early larval development and growth performances of short-spined white sea urchin, Salmacis sphaeroides were conducted under a controlled laboratory condition. The experiment was carried out with seven salinity treatments (15, 20, 25, 30, 35, 40 and 45 PSU), each of which was triplicated. Significantly highest fertilization success was ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Philosophical transactions of the Royal Society of London. Series B, Biological sciences
دوره 368 1627 شماره
صفحات -
تاریخ انتشار 2013